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1 Introduction

A closed polyhedron is the intersection of finite number of closed half spaces, i.e., the set
of points satisfying finite number of linear inequalities, and is widely used as a constraint
in various application, for example specifications or constraints in signal processing or
estimation problems, resource restrictions in financial applications and feasible sets of
probability distributions. By the progress of the convex analysis and the fixed point
theory of nonexpansive mapping, a number of convex projection based algorithms are
proposed (for example, Bauschke et al, 1997; Combettes, 1993; Yamada et al, 1998-2002).
In this paper, to apply efficiently such methods to problems with polyhedral constraints,
we propose a simple solution to the problem of the best approximation to the certain
polyhedron. By applying this solution to the the hybrid steepest descent method(Ogura
et al, 2002; Yamada et al 1998; Yamada 2001), we also present two algorithms for a linear
spectral unmixing problem. The proposed method enable us to deal with constraints and
variety of cost function (for example, least square residual, Kullback-Leibler Divergence)
as well as various a priori knowledge with great flexibility.

The rest of this paper is organized as follows. The next section contains brief prelim-
inaries on a linear unmixing problem and the hybdid steepest descent method. In the
third section, we present a simple solution to the best approximation problem. In the last
section, we show the algorithmic solution to the inversion of image spectrometry data by
using projection based convexly constrained pseudoinverse algorithm.

2 Preliminaries
A. Best Approximation Problem to Polyhedron

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Suppose that N;
hyperplains and N» closed half spaces are given by Sy; := {u € H | {p14,u) = ¢1,;} and
So; = {u € H | (p2j.u) > co;} respectively, where p1; € H, c1; € R, py; € H and

co; ER(i=1,---, Ny, j=1,---,Np). Then, the problem of our interests is
N Ny
Minimize ||u — ug|| over S := (ﬂ Su) N <Jﬂ SQJ) #0 (1)
i=1 =1

for given ug € H. It is known that the problem (1) has unique minimizer. (This fact
holds for general nonempty closed convex set C'(C H) instead of the polyhedron S. In this
case the minimizer is denoted by Po(up).) An algorithm found in (Wolfe, 1976) gives the
solution of (1) if all vertex is known. Some algorithms based on the cycric projection or
the parallel projection methods (Bauscheke 1997; Combettes, 1993; Stark, 1998; Yamada
2001; Yamada et al, 1998) can be applicable to compute such a projection (which are
computationaly easy but require infinitely many iterations in general). The quadratic
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programming techniques can also be available, for example general active-set methods(Gill
et al, 1978;Goldfarb et al, 1983) (which are finitely convergent but somewhat complicated
in handling active-sets selection). Although, the method proposed in this paper can be
essentially interpreted as an active-set method, we show in Section 3 that the complete
determination of the active set is possible if the polyhedron satisfies condition (2). For
example, the condition is fullfilled if

Ny =0 and (pa;, p2;) < 0 for all ¢ # 7,

(see Section 3 for other examples.) Based on this fact, we propose a simple algorithmic
solution to the problem (1), which requires at most only N;+ N times iterations to obtain
the solution.

B. Hybrid Steepest Descent Method

A fized point of a mapping T : H — H is a point u € H such that T'(u) = u. Fiz(T) :=
{u € H | T(u) = u} denotes the set of all fixed points of 7. A mapping T : H — H is
called k-Lipschitzian (or s-Lipschitz continuous) over S C H if there exists k > 0 such
that | T'(u) — T(v)|| < k||lu —v|| for all w,v € S. In particular, a mapping T : H — H
is called (i) nonexpansive if ||[T(u) — T'(v )|| < |lu — v for all u,v € H; (ii) attracting
nonexpansive if T : 'H — 'H is a nonexpansive mapping satlsfymg 1T (uw) = f] < ||lu—= f]
for all f € Fiz(T) # 0 and u € Fiz(T). The convex projection Pz onto a nonempty
closed convex set C'is attracting nonexpansive. A mapping F : H — H is called monotone
over S C H if (F(u) — F(v),u —wv) > 0 for all u,v € S. Indeed, a mapping F which is
monotone over S C H is called n-strongly monotone or just strongly monotone over S it
there exists > 0 such that (F(u) — F(v),u —v) > n|lu —v|]? for all u,v € S (Zeidler,
1990). Let || - || be the standard norm defined in Euclid space R?.

The following fact is an algorithmic solution to convex constrained pseudoinverse based
on the hybrid steepst descent method (Yamada et al 1998; Yamada 2001).

Fact 1 (Yamada, 1999, 2001) Suppose that C := arginf .. |Azx — bl|4m) # 0 for
a given bounded linear mapping A : 'H — R™, a possibly perturbed vector b =
(by,--- ,by,)" and a nonempty bounded closed convex set K C H. Suppose a; € H
(1t = 1,---,m) are determined to follow Az = ({aj,x), -, {am,x)). Let T(z) :=

P>, i al® (:U — <ai’x>_biai). Suppose that © : H — R is convex over K and

1 llasl? llaz|?
Gateaux d1fferent1able with derivative ©' k-Lipschitzian and n—strong]y monotone over
K. Then, the sequence (u,),>0 C H, generated by u,+1 = T(u,) — n+1@/( (un)) with
arbitrary wug, converges to uniquely existing minimizer of © over K. a

Remark 1 If K is bounded, C # () is ensured (Yamada et al, 1998). O

The following is a variation of the hybrid steepst descent method, which plays impor-
tant role to give a flexible linear unmixing algorithm in Section 4.

Fact 2 (Ogura et al, 2002a, 2002b) Assume that H is finite dimensional real Hilbert
space. Suppose that T : H — H is an attracting nonexpansive mapping with bounded
Fixz(T). Let a function © : H — R be convex and Gateaux derivative over T'(H) with
derivative ©' k-Lipschitzian. Then, the sequence (u,),>o C H, generated by u, 1 :=
T(uy,) — %H@’(T(un)) with arbitrary ug satisfies limy, .o d(un, arginf,c g,y ©(x)) = 0
(d(u,C) := inf,ec ||u — v|| denotes the distance from uw € ‘H onto a nonempty closed
convex set C). O



3 Main Results
Define a closed polyhedron S as in (1) Under the assumption that pglle)’s, defined by
(3), satisfy

<pS£N1) p(l’.Nl)> <0 for all 7 # 7, @

1 P2,

the following algorithm enable us to compute Ps(ug) for arbitraty ug € H if S # 0, as
well as to verify S is empty or not.

Algorithm 1: Let ,0(1 0= s, cf{o) Cliy pgl )= pas, célzo) = cp; and uM0) = .
For simplicity, define a function 6 : H x H x R — ]R as

(u,v) —w "
O(u, v, w) = ]2 (u#0)
0

(otherwise).

Define the sequences (p{'3 )o<i<n . (15 Jozicn, (o4 Jo<i<n, and (8 )o<i<n, as follows:

1,041 11 1,2 lz 1,2
( ). ( (( ) ( 0) (1,%)

oy ) Zpi i

1+ [ 42

(1] 1) (1 _9( 1(lz+)17p1(f 70)01(,?_)1 (3)
i+ 7 7 2 )

P(zl b : (1 —0(p lz+17p2] ,0) (},g;rl
i+ [ 42

Caj = Co; _9( 1z+1702g 70)01,i+1-

(1,N1)

If there exists ¢ such that c1 7é 0, then S = () and this algorithm completes. Otherwise,

define (u*?)gs;>n, by

i i 1 12 1,2
u(l’ +1) = u(l’ ) - e(pg 1—217 U( ) Cg 1421)/’( —21'

0) (1,n) (2, 0) (1,n)

and let py; (20) .= = pa; s Cy, = Cy;  and u(20)

= (M) While it hold for some i that
(2n #0 and <,oéZ "™ u,) < co;, repeat from n = 0 that

p(2 n—|—1) (2n) 9( (2,n) 2,n) 0) (2,n)

(
24 P2,

Bt p(2j) G By %’l)

n+l) mn n " o

Caj =Gy 0( 2(’2 )pQ’” )’0)(22 i) (2,n) (4)
um) = — G(py ™ o ey ) pe

It there exists 7 such that p(2 N3) — 0 and CSZ?NS) > (0 when this iteration stops at
n =: N3, then S = (), otherwise u(3) ig Ps(ug)- O

By the following lemma, it is easily verified that (a) the iterative step of (4) surely stops
at some n(= N3) < Ny; (b) if there exists ¢ such that c(1 M) £ 0, then S = 0 (c) if

&Nl =0 for all 1 < i < N; and there exists j such that pg ") — () and 022,n < 0, then
S = 0; (d) if C%Nl =0foralll <i< N; and pQJ" > cé) for all 1 < j < N, then
u2’" = PS(U()).

Lemma 1 Suppose that p(l N1 satjsﬁes (2). Let S;; (k)= {u e H| <p§”§l Luy > (Sl)},
S = (ﬂNl S“)) (ﬂ ] )and S = ﬂ . Then:



(a) (p53".,p55") < 0 for all i # j = (p5;"*Y p&*V) < 0 for all i # 5,

(b) i€ {1, No} | p&" ) = 0} < i € {1, Na} | pi" = 0} = 1,

(c) S = ) & SEi+D) — ¢,

(d) If M) = 0 for all i, then S0 = < SEN) = g,

(€) SUD # 0 = Psagin (u+Y) = Py (ulD),

(f) If CS{N]) =0 for all i, then SNV £ () = Py (u?Y) = Pgany) (u). O

(The proof of this lemma is omitted.)

Note: The following is an example of polyhedron satisfying (2):

{u— (X1, ,zp) €ER™

xz; > 0 for all 7 and Zwixi = 1}

i=1

where w; >0 (i =1,---,m). If w; =1 forall i =1,---,m, this polyhedron represents
the feasible set of probability distribution. The following is another example:

{u:(xl,--- ,T) € R™

x; > 0 for all 7 and Zwixi < 1}

=1

where w; > 0 (i =1,---,m). All closed affine spaces are also examples satisfying (2).

4 Application to the Linear Unmixing for Imaging Spectrome-
try

In this section, we apply the Algorithm 1 in the previous section to the problem of an
inversion of image spectrometry data. In the imaging spectrometry, a pixel is generally
mixed by a number of materials present in the scene as follows (Chang et al, 2000; Clark
et al, 1998; Heinz et al, 2001; Settle, 1993, 1996; Shimabukuro et al, 1991):

r=Ma+e, (5)
where 7 = (r1,--- ,m)T € Rl is an observed image pixel, M € R"? is a material signature,
a = (a1, -,a,)" € R? is an abundance vector, e is a noise or a measurement error,

is the number of spectral bands and p is the number of reference materials. Each 7;
represents observed reflectance of each band, and each «; represents abundance fraction
associated with i-th material and o;’s satisfy Y >, a; = land ; > Oforalli = {1,--- , p},
each component m; ; of signature matrix M is represents the reference reflectance of i-th
band of the j-th material reference spectral signature.

Then, a linear unmixing method attempts to estimate the unknown abundance vector
a from the observed image pixel r. Such an inversion process of the linear mixture
model is required to achieve the tasks of material discrimination, detection, classification,
quantification, etc.

The estimation problem is the following polyhedron constrained inverse problem:

Minimize ||r — Ma”(l) (6)
subject to a € S



where S:={a € R’ | a; >0 forall i = {1,---,p} and >,  a; =1}, and || - ||y denotes
the standard norm defined in Euclid space R'.

The quadratic programming based methods are developed in (Settle, 1993;
Shimabukuro et al, 1991) to solve (6). To avoid the computational complexity of these
method, an penalty function based method is employed in (Heinz et al, 2001; Chang et
al, 2000). These methods assume that the matrix M has full rank. Unfortunately this
assumption does not hold in some practical situations because there are so many reference

signatures and sometimes signature vectors may automatically generated from observed
image (Chang et al, 2000; Ren et al, 2000).

Algorithm 2: By letting a; := m; ., (m;. denote i-th row-vector) and K := S, Fact 1
realize the algorithm to Minimize a function ©(u) over the solution of (6). O

Remark 2 This algorithm does not require for M to be full rank. In addition, unlike
conventional techniques, Algorithm 2 can impose additional criteria © to the problem (6).
Indeed, if M does not have full rank, the solution of (6) may not be unique. For such a
case, Fact 1 can find unique minimizer of © over the set of all solution of (6). We can
take © as energy function or other function reflecting some spatial information. O

Algorithm 3: By letting O(a) := ||r — Ma/||), Fact 2 realize the algorithm to Minimize
|7 — Mal|q) over Fiz(T). O

Note: We can find a solution of (6) by using attracting nonexpansive mapping 7" := Ps
because Fix(Ps) = S.

Remark 3 Unlike conventional techniques, Algorithm 3 can deal with more flexible con-
straint than that of (6) by substituting 7. By using T := Ps Zf\; L w;Pe,, we can find a
point u € arginf, . ||r—Mal|) where C; is nonempty closed bounded set and w; € (0, 1]

and Ky = arginf ¢ Zfil w;d*(x,C;). This T enable us to handle additional a priori
knowledges reflected by C!s, which is expected to be obtained from spatial or statistical
information in the hyperspectral imaging. See (Yamada, 2001) for the properties of Ky
and other example of attracting nonexpansive mapping 7'. Fact 2 can also take other ©
for residual minimization, which means Fact 2 potentially has capability to use various
distances, which is more suitable for the hyperspectral imaging, for instance, Kullback-

Leibler Divergence O(a) := Z§:1<mi,*, a) logw or Spectral Information Divergence

Ti

(Chang, 2000) ©(a) := Y i_; (m; .. a)log <m’71a> + 3 rilog i O

r (M, ,0)

Numerical Experiment 1

We choose 3 independent reference spectral signature vector from USGS Digital Spectral
Library: splib(vers.4) for AVIRIS. m, ; is record No.120 Copiapite, m, o is record No.231
Jarosite, m, 3 record No.171 Gaothite (m, ; denote j-th column-vector of the matrix M).
These signature has band number [ = 224. Figure 1 shows the reference spectral signature
vectors my 1, My o and my 3.

Abundance of each material are set to Copiapite 60%, Jarosite 30%, Gaothite 10%,
thus abundance vector is a = (0.6, 0.3,0.1)7.

Sample observation data r are randomly generated by (5) with 30:1 SNR gaussian
error e.

Then, inversion was made by (a) the algorithm of Fact 1 (with ©(u) := ||u||) and (b)
the algorithm of Fact 2 (with T := Ps) and (¢) FCLS algorithm (6 = 10~°) proposed
in (Chang et al, 2000; Heinz et al, 2001). The simulation results of 3 data are shown in
Table 1.
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Figure 1: The reference spectral signatures.

estimated abundance « |r — MPs(a)|lf,
( (0.603551, 0.305009, 0.091440) | 1.853264252604 x 102
( (0.603404, 0.305436, 0.091159) | 1.853141617604 x 10~2
( (0.603405, 0.305436, 0.091160) | 1.853141617794 x 102
(a), Data No.2 | (0.606399, 0.304080, 0.089520) | 2.044290704859 x 102
(b), Data No.2 | (0.605570, 0.304144, 0.090286) | 2.043725005123 x 102
( ( )
( ( )
( ( )
( ( )

a), Data No.l
b), Data No.1

¢), Data No.1

)
¢), Data No.2 | (0.605570, 0.304144, 0.090286) | 2.043725005186 x 102
a), Data No.3 | (0.596860, 0.302069, 0.101070) | 1.604000824838 x 102

) 0.597202, 0.301896, 0.100902) | 1.603884893825 x 102
0.597202, 0.301897, 0.100902

b), Data No.3
¢), Data No.3

N

1.603884893852 x 1072

Table 1: Result of Experiment 1.

estimated abundance a lr — MPs(a)|lf,
(d), Data No.1 | (0.451246, 0.198576, 0.350178) | 1.902200569304 x 102
(e), Data No.1 | (0.638525, 0.326029, 0.035446) | 1.898692271721 x 1072
(), Data No.2 | (0.453241, 0.196296, 0.350463) | 2.101749344546 x 10-2
(e), Data No.2 | (0.640458, 0.324286, 0.035257) | 2.096505360051 x 1072
(d), Data No.3 | (0.447391, 0.202981, 0.349627) | 1.622697188668 x 102
(), ( )

e), Data No.3 | (0.636149, 0.328172, 0.035679) | 1.622479447754 x 102

Table 2: Result of Experiment 2.

Numerical Experiment 2

To examine the case that signature vectors are dependent, replace m,. 3 by 0.6m, 1 +0.4m, ;
and make same experiment with (d) the algorithm of Fact 1 and (e) the algorithm of Fact
2. The simulation results of 3 data are shown in Table 2.

The results of Experiments 1 and 2 show that the proposed methods gives almost
same accuracy as that given by conventional method although the proposed methods
only requires loose assumptions and has flexibility to optimality criteria and constraints.
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